Modeling of age-dependent amyloid accumulation and γ-secretase inhibition of soluble and insoluble Aβ in a transgenic mouse model of amyloid deposition
نویسندگان
چکیده
According to the "amyloid hypothesis," accumulation of amyloid beta (Aβ) peptides in the brain is linked to the development of Alzheimer's disease. The aims of this investigation were to develop a model for the age-dependent amyloid accumulation and to quantify the age- and treatment-duration-dependent efficacy of the γ-secretase inhibitor MRK-560 in the Tg2576 transgenic mouse model of amyloid deposition. Soluble and insoluble Aβ40 and Aβ42 brain concentrations were compiled from multiple naïve, vehicle, and MRK-560-treated animals. The age of Tg2576 mice in the studies ranged between 3.5 and 26 months. Single doses of MRK-560 inhibited soluble Aβ40 levels in animals up to 9 months old. In contrast, MRK-560 did not cause significant acute effects on soluble Aβ40 levels in animals older than 13 months. Absolute levels of Aβ variants increased exponentially over age and reached a plateau at ∼20 months. In the final model, it was assumed that MRK-560 inhibited the Aβ production rate with an Aβ level-dependent IC50.The age-dependent increase in Aβ levels was best described by a logistic model that stimulated the production rate of soluble Aβ. The increase in insoluble Aβ was defined as a function of soluble Aβ by using a scaling factor and a different turnover rate. The turnover half-life for insoluble Aβ was estimated at 30 days, explaining that at least a 4-week treatment in young animals was required to demonstrate a reduction in insoluble Aβ. Taken together, the derived knowledge could be exploited for an improved design of new experiments in Tg2576 mice.
منابع مشابه
Cholinergic neuropathology in a mouse model of Alzheimer's disease
Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...
متن کاملCholinergic neuropathology in a mouse model of Alzheimer's disease
Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...
متن کاملGenetic modulation of soluble Aβ rescues cognitive and synaptic impairment in a mouse model of Alzheimer's disease.
An unresolved debate in Alzheimer's disease (AD) is whether amyloid plaques are pathogenic, causing overt physical disruption of neural circuits, or protective, sequestering soluble forms of amyloid-β (Aβ) that initiate synaptic damage and cognitive decline. Few animal models of AD have been capable of isolating the relative contribution made by soluble and insoluble forms of Aβ to the behavior...
متن کاملPharmacological modulation of GSAP reduces amyloid-β levels and tau phosphorylation in a mouse model of Alzheimer's disease with plaques and tangles.
Accumulation of neurotoxic amyloid-β (Aβ) is a major hallmark of Alzheimer's disease (AD) pathology and an important player in its clinical manifestations. Formation of Aβ is controlled by the availability of an enzyme called γ-secretase. Despite its blockers being attractive therapeutic tools for lowering Aβ, this approach has failed because of their serious toxic side-effects. The discovery o...
متن کاملConsequences of Inhibiting Amyloid Precursor Protein Processing Enzymes on Synaptic Function and Plasticity
Alzheimer's disease (AD) is a neurodegenerative disease, one of whose major pathological hallmarks is the accumulation of amyloid plaques comprised of aggregated β-amyloid (Aβ) peptides. It is now recognized that soluble Aβ oligomers may lead to synaptic dysfunctions early in AD pathology preceding plaque deposition. Aβ is produced by a sequential cleavage of amyloid precursor protein (APP) by ...
متن کامل